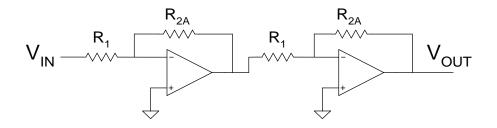
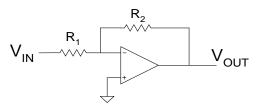
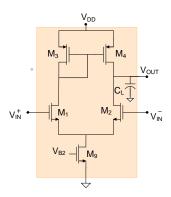

EE 505 Homework 3 Spring 2025


Due Friday March 14

Problem 1 An amplifiers is shown that has been designed for a gain magnitude of 16. Assume the Pelgrom parameter A_R characterizes the matching characteristics of the resistors and the total area of R_1 and R_2 is A_{TOT} . The performance requirements for an amplifier to be classified as good at production test is a gain that is within 1% of the nominal gain of 16. Assume the op amp has an arbitrarily high voltage gain and neglect any contact resistance and gradient effects.


- a) If 16 equal-sized resistors are used to realize R_2 and one resistor of the same size is used to realize R_1 and the total resistor area is $170\mu m^2$, determine the Pelgrom parameter A_R if the yield at test is 95%.
- b) If 16 equal-sized resistors are placed in parallel to realize R₁ and a single resistor is used to realize R₂, determine the yield assuming the total resistor area is the same as that used in part a) and compare the results that were obtained for Part a).
- c) If 4 equal-sized resistors are placed in series to realize R_2 and 4 resistors of the same size are placed in parallel to realize R_1 , determine the yield assuming the total resistor area is the same as that used in part a) and compare the results with the previous structures.
- d) If 60 equal sized resistors are placed in a series-parallel combination by placing the series connection of 30 resistors in parallel with a second series connection of 30 resistors and if this is placed in series with a single resistor of the same size to realize R₂ and if a single equal-sized resistor is used to realize R₁, determine the yield assuming the total resistor area is the same as that used in part a) and compare the results with the previous structures.

Problem 2 An alternative way to realize the gain that has a magnitude of 16 is to cascade two amplifiers in series as shown below.



- a) Compare the yield of the cascade amplifiers with that of the realizations in Problem 1 if the two finite gain amplifiers are identical and if the R_{2A} resistors are comprised of four unit resistors connected in series and R_1 is a single identical unit resistor. Assume the total area for the resistors is the same as in Problem 1.
- b) Repeat part a) if the R_{2A} resistors are two unit resistors connected in series and the R_1 resistors are two unit resistors connected in parallel. Compare the yield of the cascaded amplifiers with that of the realizations in Problem 1 and Problem 2 if the area of the unit resistor used to realize R_1 in the cascade is increased so that the total resistor area in the cascade is identical to that of the resistors in Problem 1.

Problem 3 If the total area is fixed, determine how the relative area should be allocated between R_1 and R_2 in the following circuit to maximize the yield for a given closed loop gain of K. The determination should include a mathematical justification for any conclusions you draw.

Problem 4 From whatever PDK you are most comfortable with, obtain values for the Pelgrom parameters A_{VTO} , A_{μ} and A_{COX} (or alternately A_{VT0} and A_{β}). Consider the following operational amplifier.

- a) Assume in the design that the area allocated to the p-channel transistors is equal to that allocated to the n-channel resistors. Under this assumption, determine the total area for a 3σ value of the offset voltage of 10mV. Assume an excess bias on both the n-channel and p-channel devices of 200mV and a total power dissipation of 10mW. Neglect any gradient effects and any A_L and A_w effects.
- b) How will the area change if the power dissipation is increased to 50mW?

c) What would be the 3σ value of the offset voltage if the n-channel transistors are minimum sized and the p-channel transistors are as small as possible using the same values for A_{VTO} , A_{μ} and A_{COX} ? As in part a) assume the excess bias on both the n-channel and p-channel devices of 200mV.

Problem 5 Determine the 3σ value of INL_{kmax} for a 12-bit string DAC if each of the resistors is 2μ wide and 6μ long. Assume A_R for the process is 0.01μ m.

Problem 6 Size the resistors in Problem 6 for a yield of 95% if the magnitude of INK_{kmax} must be less than 2 LSB.

Problem 7 Derive an expression for the standard deviation of the DNL of a binaryweighted current steering DAC at the mid-point transition from <011111111> to <1000000000>. Express this in terms of the normalized standard deviation of a unary current source $\sigma_{\frac{l_{UR}}{l_{Unom}}}$. Assume the DAC is realized by bundling these unary current sources into groups of 1,2,4,....2ⁿ⁻¹. Problem 6 Derive an expression for the offset voltage due to local random variations for a differential amplifier with a p-channel mirror load on the first stage if the n-channel input transistors have Fn fingers connected in parallel and if the p-channel mirror transistors have Fp fingers connected in parallel.